Please Take the Driver's Seat: A Cyanobacteria Monitoring Program For Your Needs

An Emerging Concern-Cyanobacteria in Freshwater Ponds April 5, 2019

Nancy Leland, MS Lim-Tex nleland@lim-tex.com

COONAMESSETT POND ASSOCIATION

Cyanobacteria Monitoring Collaborative

Proverbial Jim Haney quotes "All monitoring is local" "Keep it simple, we have an army to train" "It's their data, show them how to use it"

WHY ???

Citizen Scientists

Advocates, local staff, researchers

Equipment

<50 μ m, WLW, BFC isolates

Methods

Fluorometry: Single Freeze-Thaw (SFT)

ELISA analysis: Speed-vac (2-20X)

<u>This is where we are</u> Composition and Dominance

<u>This is where we're going</u> Composition, Dominance and Growth Growth Rate (GR) or Resilience Indicators (RI)

<u>Variance</u> of environmental indicator increases during critical transitions

Annual Growth rate **Resilience Indicator** $\mu d^{-1} = \ln (PC_2) - \ln (PC_1)/t_2 - t_1$ RI = 28 day PC SD 28 day growth rate (μd^{-1}) 0.2 resilience indicator -O GH GR 0.80.1 0 0 0.60 0 00 00 0.0 Ο 0.4 -0.1 28 day 0.2 -0.2 Churching the stan burg Ling the string the safe 18 AUS AUS N 500 500

State transitions:

<u>Variance</u> decreases as ecosystem transitions from one state to another

Growth rate	Doubling time	
(µ d ⁻¹)	(days)	
0.02	34	
0.05	14	
0.07	10	
0.1	7	
0.2	3	
DT =		

Table 1. Regressions between cyanobacterial biomass and total microcystins in *Microcystis* spp. dominated systems, where Log Y = a + b * Log X where Y = Log MC (ng/L) and $X = \text{Log } PC (\mu g/L)$

Microcystis spp. dominated lakes							
	а	b	Adj. r ²	n	р		
Silver Lake	1.341	1.148	0.942	39	< 0.001		
Gooseberry Pond	1.899	0.923	0.791	16	< 0.001		

Cyanobacterial populations							
Regression coefficients between cyanobacterial population size structure, biomass and total							
microcystins where $\text{Log } Z = a + b \text{*Log } X + c \text{*Log } Y$ where $Z = \text{Log } MC$ (ng/L), $X = \text{Log } \%$							
Mic and $Y = Log PC (\mu g/L)$							
	а	b	с	Adj. r ²	n	р	
	-0.123	0.939	0.787	0.780	196	< 0.001	

Table 3 Cyanobacterial population size structure, growth rates and toxin production measured using cyanobacterial biomass as phycocyanin. Values as mean of observed positive growth rates and toxin production.

			Sample Type				
		WLW		_	BFC		
Community Composition	Growth		Growth rate	MC/PC		Growth rate	MC/PC
	category*		(µ d ⁻¹)	(ng µg ⁻¹)		(µ d ⁻¹)	$(ng \mu g^{-1})$
Microcystis spp.	Low		0.01	24.0		0.02	47.72
	Med		0.05	37.7		0.04	53.90
	High		0.10	34.6		0.14	69.64
Mixed assemblage	Low		0.01	18.2		0.01	15.24
	Med		0.03	9.9		0.05	15.87
	High		0.10	10.4		0.18	14.81
	Low		0.01	0.31		0.01	0.37
Dolichospermum spp.	Med		0.05	0.75		0.04	0.42
	High		0.12	0.44		0.13	0.17

Low = $< 0.02 \text{ d}^{-1}$, Medium = 0.02-0.07 d⁻¹, High = $> 0.07 \text{ d}^{-1*}$

* Orr & Jones et al (1998), Kurmayer et al (2003), Chan et al (2004), Briand et al (2012), Chang et al (2012).

Thank you! Any Questions?

An Emerging Concern-Cyanobacteria in Freshwater Ponds April 5, 2019 Nancy Leland, MS Lim-Tex nleland@lim-tex.com

©2009 FreeBigPictures.com